A shape analysis approach to prediction of bone stiffness using FEXI
نویسنده
چکیده
The preferred method of assessing the risk of an osteoporosis related fracture is currently a measure of bone mineral density (BMD) by dual energy X-ray absorptiometry (DXA). However, other factors contribute to the overall risk of fracture, including anatomical geometry and the spatial distribution of bone. Finite element analysis can be performed in both two and three dimensions, and predicts the deformation or induced stress when a load is applied to a structure (such as a bone) of defined material composition and shape. The simulation of a mechanical compression test provides a measure of whole bone stiffness (N mm). A simulation system was developed to study the sensitivity of BMD, 3D and 2D finite element analysis to variations in geometric parameters of a virtual proximal femur model. This study demonstrated that 3D FE and 2D FE (FEXI) were significantly more sensitive to the anatomical shape and composition of the proximal femur than conventional BMD. The simulation approach helped to analyse and understand how variations in geometric parameters affect the stiffness and hence strength of a bone susceptible to osteoporotic fracture. Originally, the FEXI technique modelled the femur as a thin plate model of an assumed constant depth for finite element analysis (FEA). A better prediction of tissue depth across the bone, based on its geometry, was required to provide a more accurate model for FEA. A shape template was developed for the proximal femur
منابع مشابه
Investigation of Utilizing a Secant Stiffness Matrix for 2D Nonlinear Shape Optimization and Sensitivity Analysis
In this article the general non-symmetric parametric form of the incremental secant stiffness matrix for nonlinear analysis of solids have been investigated to present a semi analytical sensitivity analysis approach for geometric nonlinear shape optimization. To approach this aim the analytical formulas of secant stiffness matrix are presented. The models were validated and used to perform inve...
متن کاملStiffness Prediction of Beech Wood Flour Polypropylene Composite by using Proper Fiber Orientation Distribution Function
One of the most famous methods to predict the stiffness of short fiber composites is micromechanical modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural composite has been designed and the orientation averaging approach has been utilized to predict its stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution func...
متن کاملThe axisymmetric computational study of a femoral component to analysis the effect of titanium alloy and diameter variation.
This work presents a numerical approach in order to predict the influence of implant material stiffness in a femoral component design when submitted in compression. The implant success depends on the transferred load to the neighboring bone. The finite element method can be used to analysis the stress and strain distribution in the femoral component allowing to improve the implant selection. Fo...
متن کاملConcept design of Vehicle Structure for the purpose of computing torsional and bending stiffness
Automotive design engineers face the challenging problem of developing products in highly competitive markets. In this regard, using conceptual models in the first step of automotive development seems so necessary. In this paper, to make a body in white conceptual model, an engineering approach is developed for the replacement of beam-like structures, joints, and panels in a vehicle model. The ...
متن کاملAdaptive Tunable Vibration Absorber using Shape Memory Alloy
This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...
متن کامل